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Abstract
Background: Infertility is one of the common health issues around the world. The
prevalence of male factor infertility among infertile couples is approximately 30%-
35%, of which genetic factors account for 15%. The family-based whole-exome
sequencing (WES) approach can accurately detect novel variants. However, selecting
an appropriate sample for data generation using WES has proven to be challenging in
familial male infertility studies. The aim of this study was to identify types of pathogenic
male infertility in cases of familial asthenozoospermia.
Case: Two families with multiple cases were recruited for the purpose of WES. The
study population included two affected cases in pedigree I and three affected cases
in pedigree II. Two different variant callers (SAMtools and GATK) with a single-sample
calling strategy (SSCS) and a multiple-sample calling strategy (MSCS), were applied to
identify variant sites.
Conclusion: In this study, we represented the results for variant prioritization of WES
data without sequencing fertile siblings in the same pedigree by applying two different
pipelines (homozygosity and linkage-based strategy). Using the aforementioned
strategies, we prioritized annotated variants and generated a logical shortlist of private
variants for each pedigree.
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1. Introduction

Infertility is an important social health condition,
and is defined as the inability to conceive
naturally after at least one year of unprotected
intercourse. Approximately 15% couples suffer
from infertility and 30%-35% of those cases
relate to male factor infertility (1). Numerous
factors (ranging from lifestyle to heredity) may
affect semen parameters and male infertility (2).
Approximately 15% of male infertility cases are
attributable to genetic disorders (3). The majority
of mechanisms involved in disease heritability
are associated with chromosomal abnormalities
and genetic variations (4). According to OMIM,
autosomal or sex chromosome has more than 60
genes, leading to male infertility. CFTR mutation
has been implicated in 60%-90% of cases involving
infertile men, with congenital bilateral absence
of the vas deferens or epididymal obstruction.
Mutations in X-linked genes, such as USP26 and
SOX3, have been reported in cases of severe
spermatogenesis impairment (5, 6).

Approximately 30%-40% infertility cases in
men with unknown etiology may be associated
with genetic factors (6). The high proportion
of idiopathic infertility in males is attributed to
the limitations of traditional gene identification
techniques, such as the Sanger sequencing. The
most notable disadvantages of these approaches
include length of time, low throughput data,
and a broad region for candidate genes. Most
of these limitations have been addressed by
next-generation sequencing (NGS) (7).

The NGS approach, or whole-exome
sequencing (WES), is a powerful and unbiased
tool for identifying genetic variation by capturing
genome coding regions (8). WES covers a
region of approximately 1%-1.5% of the human
genome, where approximately 85% of causative
mutations are located. Overlap-, de novo-, extreme

phenotypes, and familial-based are the four main
strategies for WES analysis. Of these, fam-
ilybased WES is an efficient method of identify-
ing potential causal variants (9). This approach
led to the identification of causal variants that tra-
ditional methods had failed to detect in several
pedigrees (10). The WES specialist can gen-
erate large amounts of data and, consequently,
be of benefit to clinics. However, excluding the
called variations across the whole-exome remains
an issue, and it is not reasonable to verify all types
of candidates via the Sanger sequencing (11, 12).
Indeed, prioritizing the best candidate patho-
genic variants is the main challenge. Many
previous studies have focused on the family-
based strategy to increase the efficiency of
discovering candidate genes and reducing
the number of private variants (13).

The purpose of this study was to illustrate
the basic familial framework for the purpose of
identifying genes that relate to male infertility. To
this end, we studied seven cases in two families. In
family I, we sequenced two affected members and
their parents to filter out inherited variants. In family
II, we focused on the most distantly related family
members to reduce shared benign variations. The
advantage of this approach, by sequencing non-
affected siblings, is that not many private variations
were missed.

2. Case

2.1. Human subjects and DNA samples

In this case series study, we examined seven
cases from two unrelated families (Figure 1). DNA
was extracted from the peripheral blood leukocyte
using salting out methods.. The quality of the DNA
was checked using an agarose gel and NanoDrop
analysis.
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2.2. Whole-exome sequencing
platform

The library of all seven samples was prepared
using the SureSelectXT Library Preparation Kit
(Agilent Technologies, Santa Clara, CA, USA).
As a next step, cluster generation, paired-end
sequencing was applied on the IlluminaHiSeq
2000 platform using TruSeqv3. The binary base
call (BCL) was converted to FASTQ using the
Illumina bcl2fastq package.

2.3. Quality evaluation of the raw data

The preprocessing and generation of raw
reads (FASTQ) involved 3´ end adaptor clipping,
primer removal, and the trimming of poor base
sequence quality. The sequenced data were
assessed using the FastQC tool (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/)
to analyze Phred score distribution, together
with reads, GC content distribution, read length
distribution, and sequence duplication level. The
adaptor was removed using Trimomatic (version
1.04.636; www.github.com/ExpressionAnalysis/
ea-utils/blob/wiki/FastqMcf.md).

2.4. Alignment and duplicated PCR
removed

Following the assessment of quality control,
the raw reads were aligned to an established
human reference genome (version hg19UCSC
indexed in the FASTA format (14). Millions of
reference genome-scale short reads have been
globally streamlined using the Burrows-Wheeler
Aligner (BWA) with MEM algorithm alignment in
SAM format (15). The default parameters in the
software were based on the Burrows-Wheeler
conversion. The aligned reads were converted
to a BAM file using SAMtools software (16),

which was able to clean up and flag read-pairing
information. The BAM file was then sorted by
genomic location and indexed by SAMtools to
save space and help the subsequent process.
The Picard tool was combined with bamtools
to filter out the mismatching and inappropriate
reads for the purpose of assembled genomic
data. The Picardtool identified duplicates from the
PCR library. Data distribution and reads coverage
(alignment statistics) were then evaluated with
the CalculateHsMetrics package. Base quality was
recalibrated, using GATK covariance recalibration
(version 2.8; Broad Institute, Cambridge, MA, USA;
www.broadinstitute.org/gatk/).

2.5. Variant calling and annotation

Variant identification is the key stage in NGS
data analysis. In this step, two programs, GATK
and SAMtools, were applied to create a VCF file
containing all the sites with potential variants (16).
VCF files were filtered based on two criteria: depth
of coverage and Fred score quality (DP > 9 -’QUAL
> 25). After calling variants list„ the ANNOVAR
software tool was used to annotate screened
variations and connect the three annotation modes
according to the type of gene, region, and filter (17).

2.6. Variant filtering

The number of candidate variants was reduced
through four steps. The first step was to filter
the variants out of the coding or splicing region.
The second step was to prioritize the variants
with relatively low minor allele frequency (MAF
<1%), or novel variants. The third step was to
exclude synonymous variants and retain splice,
nonsense, Indel, and nonsynonymous mutations.
To reduce the number of candidate genes, we
focused on the identification of genes related
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to two strategies (homozygosity and linkage-
based). Family I underwent homozygosity strategy
because the DNA samples of both parents were
available. Family II was selected for linkage-based
strategy because DNA samples from all affected
cases were available. Five infertile men in this
family were diagnosed with asthenozoospermia
(ASZ); the DNA samples of two brothers and one of
the most distant affected relatives were sequenced
to identify the shared variations. In addition, the
homozygosity region for each family was obtained
using exome data. A homozygous variant in the
homozygous region was prioritized.

2.7. Variant analysis

Specific variants were assessed for evolutionary
conservation using the GREP and PhastCons

tools. Variants with a GREP score of >2.0 and
a PhastCons score of >0.3 were considered a
conserved variant. The prediction of candidate
variants that affected protein or phenotype function
was performed using five tools: Mutation Taster,
PolyPhen, Sift, CADD, and Proven (18). The variants
predicted to be disease-causing by more than
two of these tools were further analyzed. A
deleterious effect of variants on protein structure
was evaluated by the online web service HOPE.
Pathogenic variation is able to disrupt intron-exon
splice sites, exonic splicing enhancers (ESE) and
exonic splicing silencers (ESS), which can affect
gene expression and cause genetic diseases by
aberrant pre-mRNA splicing. The annotation of
intronic and exonic mutations, leading to splicing
defects, was performed using the ESEfinder and
Human Splicing Finder web resource tools (19, 20).

Figure 1. Pedigree of families with ASZ. Pedigree I and pedigree II. The black and white squares represent infertile and fertile
men, respectively. The proband is indicated by a red arrow. Candidate cases that underwent WES are indicated by a red asterisk.
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2.8. Ethical consideration

As a first step, written informed consent for
genetic studies was obtained from subjects. This
case series study was conducted in accordance
with the protocols approved by the Institutional
Review Board of the Royan Institute Research
Center and the Royan Ethics Committee, Tehran,
Iran.

2.9. Bioinformatics tools

• FastQC tool
• Trimomatic
• Burrows-Wheeler Aligner
• SAMtools
• BamTools
• Picard tool
• CalculateHsMetrics package
• GATK
• ANNOVAR

3. Results

3.1. WES Run Statistics and alignment
results

Approximately 2.5 gigabytes of exome
sequence were obtained for each of the seven
samples. All sequence sets yielded a comparable
total number of bases, reads, GC (%), Q20 (%),
and Q30 (%). Table I shows the raw stats data of
each sample. FastQC was performed to check the
quality of the raw data, focusing on base quality
score, GC content, N content, and sequence
duplication level. Mapped results, previously
generated by BWA, were computed to create the
number of total reads, paired reads, properly-
paired reads, duplicate reads, duplication rate
percentage (number of duplicates/total reads),

number of reads mapped/aligned, and unique
reads mapped (Table II).

3.2. Variant detection

Variants were called using two different tools,
GATK (version 2.6) and SAMtools (version 0.1.18),
which are the most widely used, and the Unified
Genotyper algorithm was applied. SSCS andMSCS
were separately performed for family I and family II.
The number of SNPs and Indels was determined
by different callers, and we evaluated the effects
of SSCS and MSCS on the variant for each family
(Table III). Through SAMtool, SSCS increased the
number of raw SNPs by 1.6% and 1.1% in family I and
family II, respectively. In contrast, MSCS increased
the number of raw SNPs called by 1.2% with GATK
in both pedigrees. Variants were filtered based on
the depth of coverage and quality. In SSCS and
MSCS, variant filtering removed 15% and 21% of raw
variants called by SAMtools, respectively, whereas
16% and 9.2%of those called byGATKwere filtered.
These results reflect the importance of filtering in
MSCS by SAMtools. We estimated the Ts/Tv ratio
of SNP sets using two SSCS and MSCS pipelines.
As shown in Figure 2a, in SSCS with SAMtools,
the raw SNP sets had a Ts/Tv ratio of between
1.72 and 1.88, while the Ts/Tv ratio increased in the
filtered data sets. The Ts/Tv ratio was constant in
both unfiltered and filtered MSCS data sets with
SAMtools. The Ts/Tv ratio of the raw SNP sets was
1.34-2.07 when the GATK was used, and increased
in both SSCS and MSCS with GATK (Figure 2b).
The results demonstrate that 83%-91% of SNVs
are called by both GATK and SAMtools (Figure
3).

3.3. Variant filtering

In this stage, the called variants were filtered
in four stages. In the first stage, we excluded
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approximately two-thirds of variants, which were
located in the intronic and intergenic regions.
Less than 50% of variants were likely to be
pathogenic. Of these, new and rare variants
with MAF <1% required further analysis (Table
IV). As the affected cases in family II were

from a consanguineous marriage, we focused
on homozygote variants. The number of private
variants in pedigree II is shown in Table V.
Approximately 0.05% (SAMtools) and 0.03% (GATK)
of the called variations remained after initial
filtering in family I (Table VI).

Table I. NGS run stats for seven samples

Sample ID Total read bases (bp) Total reads GC (%) AT (%) Q20 (%) Q30 (%)
100 10,374,885,048 68,707,848 52.49 47.51 96.84 94.94
101 9,551,889,446 63,257,546 52.31 47.69 96.79 94.86
102 8,128,247,252 53,829,452 52.79 47.21 95.77 93.28
103 10,019,530,104 66,354,504 51.95 48.05 96.79 94.86
200 9,915,418,624 65,665,024 52.94 47.06 96.4 94.29
201 10,637,953,322 70,450,022 53.05 46.95 96.43 94.33
202 9,679,497,432 64,102,632 53.05 46.95 96.59 94.58
Total read bases: Total number of bases sequenced. Total reads: Total number of reads. For Illumina paired-end sequencing,
this value refers to the sum of read 1 and read 2. GC (%): GC content. AT (%): AT content. Q20 (%): Ratio of bases that have a
Phred quality score in excess of 20. Q30 (%): Ratio of bases that have a Phred quality score in excess of 30

Table II. Alignment statistics for seven data aligned with BWA MEM

Samples Paired
reads in

sequencing

Properly
paired

Read 1 Read 2 Mapped
reads

Unmapped
reads

Read-pair
optical

duplicates

Duplication
percentage

100 68,707,848 67,621,688 34,353,924 34,353,924 68,767,520 65,069 424,113 0.150270
101 63,257,546 61,244,026 31,628,773 31,628,773 63,328,202 61,270 401,670 0.151691
102 53,829,452 52,945,158 26,914,726 26,914,726 53,969,040 49,300 315,834 0.141146
103 66,354,504 64,700,696 33,177,252 33,177,252 66,417,218 64,207 445,562 0.159041
200 65,665,024 63,758,102 32,832,512 32,832,512 65,809,832 249,151 19,714 0.144086
201 70,450,022 68,075,954 35,225,011 35,225,011 70,636,251 249,453 21,555 0.274010
202 64,102,632 63,080,570 32,051,316 32,051,316 64,296,060 222,177 27,934 0.057078

Table III. Number of SNPs and Indels called by SAMtools and GATK

Number of
variants

Unfiltered SNP Filtered SNP Unfiltered indel Filtered indel

SAMtools GATK SAMtools GATK SAMtools GATK SAMtools GATK
100 1,020,180 492,537 183,178 103,790 91,216 53,722 22,058 11,750
101 1,073,008 518,360 181,294 102,548 93,768 56,052 21,935 11,474
102 930,610 456,647 179,665 100,100 82,297 48,705 21,764 11,242
103 1,066,604 458,137 177,006 95,249 86,249 46,024 20,276 9,479
Multiple
samples of
pedigree I

2,557,705 2,396,362 169,315 260,117 210,415 153,486 37,415 32,228

200 1,290,000 870,536 140,444 82,796 85,664 76,129 17,204 9,612
201 1,624,699 190,435 141,757 79,148 110,845 84,310 17,363 8,887
202 1,631,100 723,156 149,358 104,198 111,435 65,608 18,524 12,024
Multiple
samples of
pedigree II

4,013,542 2,265,075 190,882 137,137 245,998 194,616 22,765 24,739

SNP: Single nucleotide polymorphism, Indel: Insertion and deletion
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Table IV. Distribution of variant type called by GATK and SAMtools from seven samples

Individual 100 101 102 103 200 201 202

Variants called with GATK 114,371 111,669 10,5012 115,909 92,631 88,211 39,347

Exonic, exonic/splicing
Splicing

41,505 41,008 40,454 41,884 34,597 33,708 27,961

Nonsynonymous Indel 29,898 29,233 28,439 29,962 23,504 22,671 9,584

Rare and novel 2,848 2,831 2,607 2,776 2,106 2,215 2,848

Variants called with
SAMtools

204,543 202,734 198,344 206,533 158,404 159,939 168,858

Exonic, exonic/splicing
Splicing

55,066 55,106 54,821 55,633 45,814 45,683 47,165

Nonsynonymous Indel 43,235 43,113 42,529 43,530 34,330 34,233 35,637

Rare and novel 9,679 9,482 8,956 9,545 7,925 6,150 7,340

Table V. Private variants of pedigree II called with SAMtools and GATK

Individual 100 101 102 Common in three affected

SAMtools GATK SAMtools GATK SAMtools GATK SAM tools GATK

Nonsynonymous SNV 35 34 35 51 42 32 5 5

Frame shift 84 1 84 1 84 0 65 0

Indel 255 3 255 5 264 5 138 0

Stopgain 5 0 5 0 5 0 2 0

Stoploss 1 1 1 0 1 1 0 0

5´UTR 178 10 178 4 213 7 94 0

3´UTR 263 8 263 12 276 4 147 2

Exonic 329 37 329 60 347 37 140 5

Exonic, splicing 47 1 47 0 47 1 7 0

Table VI. Private variants of pedigree I called with SAMtools and GATK

Individual 200 201 202 203 Case /control

SAMtools GATK SAMtools GATK SAMtools GATK SAMtools GATK SAMtools GATK

Nonsynonymous
SNV

770 698 792 675 820 751 748 663 85 56

Frame shift 160 23 148 25 162 24 167 23 23 4

Indel 754 60 779 67 726 61 781 54 224 12

Stopgain 28 6 33 11 35 12 28 10 8 1

Stoploss 33 3 3 1 2 0 7 1 5 0

5´UTR 669 84 712 98 603 92 647 88 156 21

3´UTR 1001 177 1046 192 934 166 1015 195 322 35

Exonic 1718 794 1744 802 1712 854 1667 795 225 75

Exonic, splicing 94 10 96 9 93 10 89 13 14 2
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Figure 2. Comparison of Ts/Tv between filtered and unfiltered variants. (a) Ts/Tv ratio of unfiltered (U) and filtered (F) variants
called by SAMtools; (b) Ts/Tv ratio of unfiltered (U) and filtered (F) variants called by GATK.

Figure 3. The intersection of variants identified by the two-caller strategy. The Venn diagram depicts the number of variants in
the seven cases, identified by GATK and SAMtools.

Page 382 https://doi.org/10.18502/ijrm.v13i5.7158



International Journal of Reproductive BioMedicine Strategies of whole exome sequencing analysis

4. Discussion

NGS-based technology is a powerful tool
for identifying the genetic basis of the human
phenotype. As one of the leading molecular
techniques in the field of reproductive medicine,
WES has a major impact on our understanding
of the genetic causes of male infertility. WES
generates a large amount of genetic data;
however, the processing of WES data can be
complex (11). As a standard pipeline, BWA aligns
the sequencing reads against the reference
genome and variant callers detect the SNVs and
Indels (7). In this study, SAMtools and GATK were
used as variant callers with SSCS and MSCS.
Both unfiltered and filtered variants indicated
that SAMtools called more SNVs than GATK did
owing to its lower internal filtering criteria. Our
results demonstrated that filtered and called Indel
variants with SAMtools decreased compared with
GATK. In parallel, other studies confirmed the
high potential of GATK in the identification of
true Indel variants (21). In addition, the number
of called raw SNVs increased in SSCS with
SAMtools and in MSCS with GATK, in both
families. The results showed that SAMtools and
GATK are capable of calling more raw SNVs in
SSCS and MSCS, respectively, in both analyzed
pedigrees. Therefore, we suggest that GATK and
SAMtools are appropriate callers in MSCS and
SSCS, respectively. These results, along with
other reports that illustrate the role of GATK in
MSCS, such as those by Liu et al., demonstrate
that many variants have been lost by SAMtools
in MSCS (21). Cornish and Guda compared 30
different pipelines and found that Novoalign plus
the GATK Unified Genotyper showed the highest
sensitivity with a low number of false positives
(22).

Variants were annotated by ANNOVAR, and
variants outside the coding regions, as well as

those of synonymous coding, were filtered out.
Subsequently, known variants with a frequency
greater than 1% in ExAC, dbSNP, and 1,000
Genomes were excluded, to reduce the number
of potential disease-causing variants (23-25).
Homozygosity mapping and linkage approaches
prioritized private variants for further analysis
based on the two family-based filtering strategies.
As shown in Tables V and VI, SAMtools called
more private variants that were either missed by
GATK or flagged as low-quality.

We have shown that WES is a powerful, efficient,
and cost-effective technique that significantly
reduces the number of candidate genes in
a small number of infertility cases in families
with multiple affected individuals. Our research
demonstrates that sequencing a small number
of samples, while using appropriate filters
against public SNVs and in-house databases,
is a sufficient approach to detecting private
variants. The genomic study of familial male
infertility is limited in several respects: the first
challenge is the identification of families that
contain more than two infertile men who are
willing to participate in the study. The selection
of appropriate samples for sequencing is also
very important. There is a level of uncertainty
when detecting genuine fertile men as a result
of assisted reproductive technologies, age of
incidence, and cultural barriers. Therefore, great
care should be taken in the selection of fertile
samples.

5. Conclusion

This study demonstrates two strategies for
the WES analysis of familial male infertility cases
to suggest a convenient approach to identify
potentially functional variants. This, in turn, may
further our understanding of the underlying
mechanisms behind male infertility.
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